0

Granite genesis: in-situ melting and crustal evolution

Erschienen am 26.06.2007, 1. Auflage 2007
160,49 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781402058905
Sprache: Englisch
Umfang: xi, 278 S., 217 s/w Illustr., 1 farbige Illustr.,
Einband: gebundenes Buch

Beschreibung

InhaltsangabePreface Acknowledgements 1 Introduction 1.1 Rock genesis and its relationship to geosystems 1.1.1 Sedimentary rocks and continental geology 1.1.2 Basaltic rocks and plate tectonics 1.1.3 "Whence the granites" 1.2 Granites, migmatites and granite problems 1.2.1 Definitions 1.2.1.1 Granite 1.2.1.2 Migmatite: terminology and classification 1.2.2 Granite magma intrusion and its problems 2 Crustal melting: experiments and conditions 2.1 Introduction 2.2 Mineral melting 2.2.1 Topology of melting 2.2.2 Muscovite dehydration melting 2.2.3 Biotite dehydration melting 2.2.4 Hornblende dehydration melting 2.2.5 Biotite and hornblende melting in granitic rocks 2.2.6 Other hydrous minerals 2.2.7 Suprasolidus decompression dehydration reactions 2.3 Rock melting - experimental evidence 2.3.1 Melt compositions 2.3.2 Restite compositions 2.3.3 Rock solidi 2.3.4 Melt fraction 2.3.5 Conclusion 2.4 Structure and composition of the crust 2.5 Water in the crust 2.6 Crustal heat and partial melting 2.6.1 Introduction 2.6.2 Thickened crust 2.6.3 Burial of high radiogenic rocks 2.6.4 Shear heating 2.6.5 Extension and removal of lithospheric mantle 2.6.6 Intrusion of mafic magma 2.6.7 Crustal thinning and "diapiric" decompression 3. Insitu melting and intracrustal convection: granite magma layers 3.1 Introduction 3.1.1 Geophysical evidence for crustal melting 3.1.1.1 Himalayas and Tibetan plateau 3.1.1.2 The Andes 3.1.2 PT conditions of granite, migmatite and granulite formation 3.2 Crustal melting I: Initial melting and partial melt layer 3.2.1 Formation of a partial melt layer 3.2.2 Development of a partial melt layer in heterogeneous crust 3.3 Crustal melting II: Convection and formation of magma layer 3.3.1 Gravitational separation and formation of magma layer 3.3.2 Convection and development of magma layer 3.3.3 Upward thickening of magma layer 3.4 Compositional variation within magma layer 3.5 Magma layer, granite layer and granite bodies 3.6 MI fluctuation (remelting) and granite sequence 3.7 Conclusion 4. Geological evidence for in-situ melting origin of granite layers 4.1 Migmatite to granite 4.1.1 ThorOdin dome, Canada 4.1.2 Broken Hill, Australia 4.1.3 Mt. Stafford, Australia 4.1.4 Trois Seigneurs massif, Pyrenees 4.1.5 Velay Dome, France 4.1.6 Coastal migmatite-granite zone, SE China 4.1.7 Cooma and Murrumbidgee, Australia 4.1.8 Optica grey gneiss, Canada 4.2 Contact metamorphism 4.3 Xenoliths and mafic enclaves 4.4 Granite layer and granite exposures 4.5 Fluctuation of MI and downward younging granite sequence 5. Differentiation of magma layer: geochemical considerations 5.1 Introduction 5.2 Compositional variation 5.3 Strontium isotopes 5.4 Oxygen isotopes 5.5 Rare earth elements 5.6 Summary 6. Mineralisation related to in-situ granite formation 6.1 Introduction 6.2 Source of ore-forming elements 6.3 Formation and evolution of ore-bearing fluid 6.4 Types of mineral deposits 6.4.1 Vein mineralisation 6.4.2 Disseminated mineralisation 6.5 Age relationships 6.6 Temperature distribution 6.7 Formation and distribution of hydrothermal mineral deposits 6.7.1 Precipitation of ore-forming elements 6.7.2 Oxygen isotope evidence 6.8 Mineralised depth horizons